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LETTER TO THE EDITOR

Scaling laws and topological exponents in Voronoi
tessellations of intermittent point distributions
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Max-Planck-Institut f̈ur Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden,
Germany

Received 19 February 1998, in final form 16 April 1998

Abstract. Voronoi tessellations of scale-invariant fractal sets are characterized by topological
and metrical properties that are significantly different from those of natural cellular structures.
As an example we analyse Voronoi diagrams of intermittent particle distributions generated by
a directed percolation process in 2+ 1 dimensions. We observe that the average area of a cell
increases much faster with the number of its neighbours than in natural cellular structures where
Lewis’ law predicts a linear behaviour. We propose and numerically verify a universal scaling
law that relates shape and size of the cells in scale-invariant tessellations. An exponent, related
to the topological properties of the tessellation, is introduced and estimated numerically.

Planar random mosaics are often encountered in nature, as, for example, in cuts of biological
tissues [1, 2] and two-dimensional soap froths [3, 4]. Thorough investigations of the
topological and metrical properties of a huge variety of natural mosaics show a surprising
similarity despite the fact that the moulding forces are completely different [5].

The Voronoi construction [6] allows us to generate a mosaic from a set of arbitrarily
distributed seeds. It assigns to each seed a cell which is defined as the set of all points
of the plane which are at least as close to this seed as to any other seed. Since the
resulting Voronoi tessellation is a space-filling cellular structure it allows us to introduce
the notion of neighbourhood, i.e. two seeds are neighboured if their cells share at least one
side. Thus the Voronoi construction enables us to investigate the neighbour statistics by
analysing the topological properties of the corresponding tessellation. This approach has
been successfully applied to experimental monosize disk assemblies on an air table [7, 8],
confirming the universality of random mosaics. In addition, the Voronoi construction offers
an alternative tool for the characterization of the order–disorder transition which occurs
when the density is reduced.

So far all experimentally investigated cellular structures are characterized by a typical
scale, namely the mean size of a cell. The following question therefore arises: How are
the mentioned universal laws affected in the case ofscale-invariant mosaics? In scale-
invariant tessellations one expects that the area distribution of the cells exhibits a power-
law behaviour. Moreover, it was shown in [9] that in Sierpinski cellular structures the
distribution of edge numbers also behaves algebraically. In this work we are particularly
interested in the relation between topological and metrical properties of scale-invariant
mosaics. For this purpose we investigate Voronoi tessellations of intermittent particle
distributions with algebraic long-range correlations that are generated by planar stochastic
point processes.
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Figure 1. Ordinary and scale-invariant cellular structures. The figure shows parts of Voronoi
tessellations for a Poissonian distribution of points (left) and for a point set generated by an
almost critical DP process (right).

As an example we consider a directed percolation (DP) process in 2+ 1 dimensions
[10, 11]. In DP—interpreted as a time-dependent stochastic process—particles on a lattice
either produce an offspring or self-destruct. Depending on the rates of offspring production
and self-destruction this process exhibits a phase transition from a fluctuating active phase
into an absorbing state without particles from where the system cannot escape. We use
directed bond percolation [10] which is controlled by a single parameter, namely the
percolation probabilityp. Below a critical thresholdp < pc the system approaches the
absorbing state in an exponentially short time whereas in the active phase withp > pc a
fluctuating stationary state exists on the infinite lattice. Close to criticality such a stationary
DP process evolves through configurations that are characterized by spatially intermittent
patterns with long-range correlations [12], i.e. very few particles form highly localized
clouds separated by large empty regions.

In this work we use spatial configurations (snapshots) of active particles generated by an
almost critical stationary DP process as point sets for a Voronoi construction and study the
properties of the resulting tessellations. As shown in figure 1, such a tessellation appears
to be very different from natural cellular structures. The reason is that point sets generated
by an almost critical DP process approximate a fractal set, apart from lower and upper
cut-offs due to system size and lattice spacing. In contrast to natural cellular structures
the corresponding Voronoi tessellations are invariant under rescaling. Here we address the
question: How do the topological and metrical properties of scale-invariant tessellations
differ from those of natural structures? To this end we focus on the correlations between
shape and size of the cells.

The simplest quantity describing these correlations is〈A〉k/〈A〉, the normalized average
area of an arbitrarily chosenk-sided cell. As pointed out first by Lewis [1],〈A〉k increases
linearly with k for a huge variety of tessellations. Deviations from Lewis’ law have so
far been observed in soap froth experiments [3, 4] and air table tessellations in the dense
packing regime [8]. These deviations, however, are restricted to cells with only a few
neighbours whereas for largek the linear law appears to be asymptotically valid [4].

In this work the distributionP(k,A) of k-sided cells with areaA generated by an
almost critical DP process is studied numerically. To this end a directed bond percolation
process with parallel updates is simulated on a 500× 500 square lattice with periodic
boundary conditions. The simulations are performed in the active phase with a small
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Figure 2. (a) Normalized average area〈A〉k/〈A〉 of k-sided cells generated by a DP process in
comparison with a Poisson distribution [14], a cucumber tissue [1], and a soap froth [3]. The
inset shows a magnification for small values. (b) First three moments〈(k − k0)

q 〉A of the edge
number distribution for cells with areaA. The shiftk0 = 3 is explained in the text.

reduced percolation probabilityp − pc = 10−4, using the critical percolation threshold
pc = 0.287 338 [13]. After equilibration over 105 time steps the system evolves in a
practically stationary state with on average about 103 particles. The value ofp − pc and
the large lattice size ensure that the systems stays in the active phase. At intervals of 100
time steps the actual configuration of active particles is converted into the corresponding
Voronoi tessellation†. Averaging over 1000 of such tessellations we determine the relative
frequencyP(k,A) as well as the mean area〈A〉k of a k-sided cell.

As shown in figure 2(a), the curve for〈A〉k/〈A〉 shows an untypical behaviour as it
increases significantly faster than in cellular structures with a typical scale [1, 3, 14]. It
neither resembles Lewis’ linear law nor a quadratic behaviour that has been discussed in
the context of a perimeter law for metallurgical grain structures [4]. The numerical results
instead suggest an algebraic increase. In order to check the quality of the scaling, we
measured the first three moments of the edge number distribution of cells with areaA (see
figure 2(b)). We observed that the best results are obtained if the edge numbers are measured
with respect to their natural minimumk0 = 3. The slopes are estimated by 0.13(2), 0.26(3),
and 0.38(5) for q = 1, 2, 3, respectively, indicating simple scaling.

Our measurements forP(k,A) are shown in figure 3(a). AsA increases, the maximum
of the curves is shifted along the broken line to higher edge numbersk. The observation
that—despite the discreteness ofk—all curves roughly have the same shape supports the
conjecture that the cell topology in DP may exhibit universal scaling.

Let us recall the scaling properties of DP. As usual, we denote the directed dimension
(time) by the index‖ and the other spatial dimensions by⊥. In the active phase close to
criticality the stationary particle intensityρ and the spatial and temporal correlation lengths
ξ⊥, ξ‖ scale as [10]

ρ ∼ (p − pc)β ξ⊥ ∼ (p − pc)−ν⊥ ξ‖ ∼ (p − pc)−ν‖ . (1)

The exponentsβ, ν⊥, and ν‖ are the three basic critical exponents of DP which usually
determine other DP exponents by simple scaling relations. In 2+ 1 dimensions they have
been numerically estimated [11] byβ = 0.584,ν⊥ = 0.734, andν‖ = 1.295.

† The Voronoi construction was performed with the help of the LEDA software package. We extended the
algorithm in a way such that periodic boundary conditions are taken into account.
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Figure 3. Numerical results from Monte Carlo simulations in the scaling regime. (a) Double-
logarithmic representation of the relative frequencyP(k,A) of cells with k edges and areaA
in units of squared lattice spacing. The broken line indicates the location of the maxima. (b)
Collapse of the same data using the scaling form (6), visualizing the scaling function8. The
best collapse is obtained for the topological exponentτ = 0.20(4).

The Voronoi construction maps each active site onto a cell with a certain areaA and
a topologyk. The cell topology, i.e. the number of neighbours, can be regarded as an
additional quantity for the description of a DP process in more than one spatial dimension.
In order to find an appropriate scaling relation, we conjecture—in analogy to equation (1)—
that the cell topology exhibits scaling properties similar to those of distances and densities.
This means that the corresponding scaling regime is restricted tok < κ, whereκ diverges
close to the transition as

κ ∼ (p − pc)−τ . (2)

Hereκ limits the scaling regime of edge numbers similarly asξ⊥ limits the scaling regime
of distances in the active phase.τ is a critical exponent which will be referred to as a
topological exponentof DP. At present it is not clear whetherτ is a novel exponent or
related to the bulk exponentsβ, ν⊥, ν‖ by a scaling relation (as, for example, the critical
initial slip exponent of DP [15]).

In the scaling regime we expect the probability distributionP(k,A) for cells with
topologyk and areaA to obey the scaling form

P(k,A) ∼ A−γ18(kA−γ2) (k < κ,A < ξ2
⊥) (3)

where8(z) is a universal scaling function. The exponentsγ1, γ2 can be derived as follows.
Summing over the edge numbersk we obtain the area distribution

P(A) =
∑
k

P (k,A) '
∫ ∞

0
dk P (k,A) ∼ Aγ2−γ1. (4)

Assuming that 0< γ2 − γ1 + 2 < 1 we can compute the average area of cells for a given
scaling lengthξ⊥ by

〈A〉 ∼
∫ ξd⊥

ad
dAAP(A) ∼ ξd(γ2−γ1+2)

⊥ (5)

where a is the lattice spacing andd = 2 the spatial dimension. Since〈A〉 is inversely
proportional to the intensity of pointsρ ∼ ξ−β/ν⊥⊥ we obtain the relationγ1 = γ2+2−β/dν⊥
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by comparing the exponents. On the other hand, the argument of the scaling function8

in equation (3) should be invariant under rescalingA → bdA, k → bτ/ν⊥k, leading to
γ2 = τ/dν⊥. Thus the expected scaling relation reads

P(k,A) ∼ A2+(τ−β)/dν⊥8(kA−τ/dν⊥) (k < κ,A < ξ2
⊥). (6)

In order to verify this scaling law, we numerically estimated the topological exponentτ by
data collapse (see figure 3(b)). Again, the best collapse is obtained if one replacesk by
k − k0 with k0 = 3, which is the natural minimum for the number of sides of a cell. Our
best estimate isτ = 0.20(4), corresponding toγ1 = 1.73(3) andγ2 = 0.13(3). The collapse
is fairly convincing, supporting the above scaling hypothesis. In addition, the result is in
agreement with the measurements in figure 2(b). We note that this result should not depend
on the specific choice of the DP dynamics (e.g. bond or site percolation). Rather we expect
τ to be a universal exponent characterizing the DP class in 2+1 dimensions. The question
of whetherτ is independent or related to the other scaling exponents is still open.

It should be noted that the proposed scaling hypothesis needs further verification as the
scaling regime ofk extends over one decade only. The main limitation is the small value
of τ , i.e. each decade of scaling range ink requires about five decades of scaling range
in A. However, it can be shown that equation (3) holds exactly in the case of a simple
Sierpinski gasket which strongly supports our scaling hypothesis [16]. The scaling form
assumes that the underlying point distribution is a simple fractal. This is the case for spatial
cuts of critical DP states, as stated in [12]. For multifractal cellular structures, however, the
proposed scaling relation should be replaced by appropriate multiscaling laws [16].

We would like to thank W Wolf for teaching us how to use the LEDA software package.
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